298 research outputs found

    Mask-ShadowGAN: Learning to Remove Shadows from Unpaired Data

    Full text link
    This paper presents a new method for shadow removal using unpaired data, enabling us to avoid tedious annotations and obtain more diverse training samples. However, directly employing adversarial learning and cycle-consistency constraints is insufficient to learn the underlying relationship between the shadow and shadow-free domains, since the mapping between shadow and shadow-free images is not simply one-to-one. To address the problem, we formulate Mask-ShadowGAN, a new deep framework that automatically learns to produce a shadow mask from the input shadow image and then takes the mask to guide the shadow generation via re-formulated cycle-consistency constraints. Particularly, the framework simultaneously learns to produce shadow masks and learns to remove shadows, to maximize the overall performance. Also, we prepared an unpaired dataset for shadow removal and demonstrated the effectiveness of Mask-ShadowGAN on various experiments, even it was trained on unpaired data.Comment: Accepted to ICCV 201

    Direction-aware Spatial Context Features for Shadow Detection

    Full text link
    Shadow detection is a fundamental and challenging task, since it requires an understanding of global image semantics and there are various backgrounds around shadows. This paper presents a novel network for shadow detection by analyzing image context in a direction-aware manner. To achieve this, we first formulate the direction-aware attention mechanism in a spatial recurrent neural network (RNN) by introducing attention weights when aggregating spatial context features in the RNN. By learning these weights through training, we can recover direction-aware spatial context (DSC) for detecting shadows. This design is developed into the DSC module and embedded in a CNN to learn DSC features at different levels. Moreover, a weighted cross entropy loss is designed to make the training more effective. We employ two common shadow detection benchmark datasets and perform various experiments to evaluate our network. Experimental results show that our network outperforms state-of-the-art methods and achieves 97% accuracy and 38% reduction on balance error rate.Comment: Accepted for oral presentation in CVPR 2018. The journal version of this paper is arXiv:1805.0463
    • …
    corecore